home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Sprite 1984 - 1993
/
Sprite 1984 - 1993.iso
/
src
/
lib
/
m
/
log1p.c
< prev
next >
Wrap
C/C++ Source or Header
|
1988-07-11
|
5KB
|
163 lines
/*
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that this notice is preserved and that due credit is given
* to the University of California at Berkeley. The name of the University
* may not be used to endorse or promote products derived from this
* software without specific prior written permission. This software
* is provided ``as is'' without express or implied warranty.
*
* All recipients should regard themselves as participants in an ongoing
* research project and hence should feel obligated to report their
* experiences (good or bad) with these elementary function codes, using
* the sendbug(8) program, to the authors.
*/
#ifndef lint
static char sccsid[] = "@(#)log1p.c 5.2 (Berkeley) 4/29/88";
#endif /* not lint */
/* LOG1P(x)
* RETURN THE LOGARITHM OF 1+x
* DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
* CODED IN C BY K.C. NG, 1/19/85;
* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
*
* Required system supported functions:
* scalb(x,n)
* copysign(x,y)
* logb(x)
* finite(x)
*
* Required kernel function:
* log__L(z)
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* log(1+f) is computed by
*
* log(1+f) = 2s + s*log__L(s*s)
* where
* log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
*
* See log__L() for the values of the coefficients.
*
* 3. Finally, log(1+x) = k*ln2 + log(1+f).
*
* Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
* n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
* 20 bits (for VAX D format), or the last 21 bits ( for IEEE
* double) is 0. This ensures n*ln2hi is exactly representable.
* 2. In step 1, f may not be representable. A correction term c
* for f is computed. It follows that the correction term for
* f - t (the leading term of log(1+f) in step 2) is c-c*x. We
* add this correction term to n*ln2lo to attenuate the error.
*
*
* Special cases:
* log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
* log1p(INF) is +INF; log1p(-1) is -INF with signal;
* only log1p(0)=0 is exact for finite argument.
*
* Accuracy:
* log1p(x) returns the exact log(1+x) nearly rounded. In a test run
* with 1,536,000 random arguments on a VAX, the maximum observed
* error was .846 ulps (units in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#if defined(vax)||defined(tahoe) /* VAX D format */
#include <errno.h>
#ifdef vax
#define _0x(A,B) 0x/**/A/**/B
#else /* vax */
#define _0x(A,B) 0x/**/B/**/A
#endif /* vax */
/* static double */
/* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
/* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
/* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
#define ln2hi (*(double*)ln2hix)
#define ln2lo (*(double*)ln2lox)
#define sqrt2 (*(double*)sqrt2x)
#else /* defined(vax)||defined(tahoe) */
static double
ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
#endif /* defined(vax)||defined(tahoe) */
double log1p(x)
double x;
{
static double zero=0.0, negone= -1.0, one=1.0,
half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
double logb(),copysign(),scalb(),log__L(),z,s,t,c;
int k,finite();
#if !defined(vax)&&!defined(tahoe)
if(x!=x) return(x); /* x is NaN */
#endif /* !defined(vax)&&!defined(tahoe) */
if(finite(x)) {
if( x > negone ) {
/* argument reduction */
if(copysign(x,one)<small) return(x);
k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
if(z+t >= sqrt2 )
{ k += 1 ; z *= half; t *= half; }
t += negone; x = z + t;
c = (t-x)+z ; /* correction term for x */
/* compute log(1+x) */
s = x/(2+x); t = x*x*half;
c += (k*ln2lo-c*x);
z = c+s*(t+log__L(s*s));
x += (z - t) ;
return(k*ln2hi+x);
}
/* end of if (x > negone) */
else {
#if defined(vax)||defined(tahoe)
extern double infnan();
if ( x == negone )
return (infnan(-ERANGE)); /* -INF */
else
return (infnan(EDOM)); /* NaN */
#else /* defined(vax)||defined(tahoe) */
/* x = -1, return -INF with signal */
if ( x == negone ) return( negone/zero );
/* negative argument for log, return NaN with signal */
else return ( zero / zero );
#endif /* defined(vax)||defined(tahoe) */
}
}
/* end of if (finite(x)) */
/* log(-INF) is NaN */
else if(x<0)
return(zero/zero);
/* log(+INF) is INF */
else return(x);
}